Ag Decorated Co3O4-Nitrogen Doped Porous Carbon as the Bifunctional Cathodic Catalysts for Rechargeable Zinc-Air Batteries

Author:

Leng Pingshu,Wang Hanbin,Wu Binfeng,Zhao Lei,Deng Yijing,Cui Jinting,Wan Houzhao,Lv Lin

Abstract

The use of transition metals as bifunctional catalysts for rechargeable zinc-air batteries has recently attracted much attention. Due to their multiple chemical valence states, the cobalt oxides are considered to be promising catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this work, bifunctional Ag-decorated Co3O4-nitrogen doped porous carbon composite (Co3O4-NC&Ag) catalysts were synthesized by annealing ZIF-67 in N2 and O2, respectively, followed by Ag deposition using chemical bath deposition. Due to the decoration of Ag nanoparticles and high specific surface area (46.9 m2 g−1), the electrochemical activity of Co3O4 increased significantly. The optimized Co3O4-NC&Ag catalysts possessed superior ORR performance with a half-wave potential of 0.84 V (vs. RHE) and OER activity with an overpotential of 349 mV at 10 mA cm−2. The open circuit voltage of the Co3O4-NC&Ag-based zinc-air battery was 1.423 V. Meanwhile, the power density reached 198 mW cm−2 with a specific discharge capacity of 770 mAh g−1 at 10 mA cm−2, which was higher than that of Pt/C-based zinc-air battery (160 mW cm−2 and 705 mAh g−1). At a current density of 10 mA cm−2, the charge-discharge performance was stable for 120 h (360 cycles), exhibiting better long-term stability than the Pt/C&RuO2 counterpart.

Funder

The Natural Science Foundation of Hubei Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3