Progress and Applications of Seawater-Activated Batteries

Author:

Chen Jinmao,Xu Wanli,Wang Xudong,Yang Shasha,Xiong Chunhua

Abstract

Obtaining energy from renewable natural resources has attracted substantial attention owing to their abundance and sustainability. Seawater is a naturally available, abundant, and renewable resource that covers >70% of the Earth’s surface. Reserve batteries may be activated by using seawater as a source of electrolytes. These batteries are very safe and offer a high power density, stable discharge voltage, high specific energy, and long dry storage life and are widely used in marine exploration instruments, life-saving equipment, and underwater weaponry. This review provides a comprehensive introduction to seawater-activated batteries. Here, we classify seawater-activated batteries into metal semi-fuel, high-power, and rechargeable batteries according to the different functions of seawater within them. The working principles and characteristics of these batteries are then introduced, and we describe their research statuses and practical applications. Finally, we provide an outlook on the development of seawater-activated batteries and highlight practical issues to drive further progress.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent progress in aqueous underwater power batteries;Discover Applied Sciences;2024-08-14

2. The Enhancement Discharge Performance by Zinc-Coated Aluminum Anode for Aluminum–Air Battery in Sodium Chloride Solution;Applied Sciences;2024-07-18

3. Effects of Electrochemical Deposition of Zinc on the Discharge Performance of Seawater Batteries Operating on Aluminum-Air System;2024 International Seminar on Intelligent Technology and Its Applications (ISITIA);2024-07-10

4. The Chemical Stability of NASICON Solid Electrolyte for Seawater Batteries;2024 16th International Conference on Electronics, Computers and Artificial Intelligence (ECAI);2024-06-27

5. Development of aqueous magnesium–air batteries: From structure to materials;Journal of Alloys and Compounds;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3