A Tier-Wise Method for Evaluating Uncertainty in Life Cycle Assessment

Author:

Mahmood AwaisORCID,Varabuntoonvit Viganda,Mungkalasiri JittiORCID,Silalertruksa Thapat,Gheewala Shabbir H.ORCID

Abstract

As a decision support tool, life cycle assessment (LCA) is prone to multiple uncertainties associated with the data, model structures, and options offered to practitioners. Therefore, to make the results reliable, consideration of these uncertainties is imperative. Among the various classifications, parameter, scenario, and model uncertainty are widely reported and well-acknowledged uncertainty types in LCA. There are several techniques available to deal with these uncertainties; however, each strategy has its own pros and cons. Furthermore, just a few of the methods have been included in LCA software, which restricts their potential for wider application in LCA research. This paper offers a comprehensive framework that concurrently considers parameter, scenario, and model uncertainty. Moreover, practitioners may select multiple alternatives depending on their needs and available resources. Based on the availability of time, resources, and technical expertise three levels—basic, intermediate, and advanced—are suggested for uncertainty treatment. A qualitative method, including local sensitivity analysis, is part of the basic approach. Monte Carlo sampling and local sensitivity analysis, both of which are accessible in LCA software, are suggested at the intermediate level. Advanced sampling methods (such as Latin hypercube or Quasi-Monte Carlo sampling) with global sensitivity analysis are proposed for the advanced level.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference61 articles.

1. Life Cycle Assessment (LCA): A Guide to Best Practice;Klöpffer,2014

2. An Uncertain Climate: The Value of Uncertainty and Sensitivity Analysis in Environmental Impact Assessment of Food;Groen;Doctoral Dissertation,2016

3. Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable Products;Curran,2012

4. Life-Cycle Assessment Practitioner Survey: Summary of Results

5. Environmental Management—Life Cycle Assessment—Requirements and Guidelines,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3