An Integrated Sensitivity and Uncertainty Quantification of Fragility Functions in RC Frames

Author:

Nasrollahzadeh KouroshORCID,Hariri-Ardebili Mohammad AminORCID,Kiani HoumanORCID,Mahdavi Golsa

Abstract

Uncertainty quantification is a challenging task in the risk-based assessment of buildings. This paper aims to compare reliability-based approaches to simulating epistemic and aleatory randomness in reinforced concrete (RC) frames. Ground motion record-to-record variability is combined with modeling uncertainty which is propagated by either an approximate first-order second-moment or Latin Hypercube sampling methods. The sources of uncertainties include post-yield hardening stiffness, cyclic energy dissipation capacity, and the plastic and post-cap rotation capacities of beam-column elements. All nonlinear simulations are performed with two methods: detailed incremental dynamic analysis, and the simplified SPO2IDA. The combination of all parametric methods is used to analyze two RC frames (four-story and eight-story), and the results are further post-processed to drive fragility functions. Several assumptions were investigated in curve fitting, functional form, uncertainty, and confidence intervals. The results indicate the importance of modeling uncertainty in higher seismic intensity levels. While there is a negligible difference in fragility curve fitting, its variability due to optimal intensity measure parameters is dominant.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference70 articles.

1. Probability is perfect, but we can't elicit it perfectly

2. Probabilistic Earthquake Loss Estimation and Loss Disaggregation in Buildings;Aslani;Ph.D. Thesis,2005

3. Global Collapse of Frame Structures under Seismic Excitations;Ibarra,2005

4. An overview of PEER’s performance-based earthquake engineering methodology;Porter;Proceedings of the 9th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP9),2003

5. Incremental dynamic analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3