Assessment of the Blasting Efficiency of a Long and Large-Diameter Uncharged Hole Boring Method in Tunnel Blasting Using 3D Numerical Analysis

Author:

Kim Min-SeongORCID,Kim Chang-Yong,Song Myung-Kyu,Lee Sean SeungwonORCID

Abstract

Cut blasting is one of the most essential processes to reduce blast-induced vibration in tunnel blasting. The long and large-diameter uncharged hole boring (LLB) method is an example of one of the cut blasting methods, which utilizes large-diameter uncharged holes drilled in the tunnel face. In this study, blasting simulations were performed to analyze its blasting mechanism, and the LLB method and the traditional burn-cut method were simulated to compare their blasting efficiency. A 3D numerical analysis using LS-DYNA code, a highly non-linear transient dynamic finite element analysis using explicit time integration, was used to simulate the blasting process, and a Johnson–Holmquist constitutive material model, which is optimal for simulating brittle materials under dynamic conditions, was used to simulate the rock behavior under blasting. The modified LLB method showed a 3.75-fold increase in the advance per round compared to the burn-cut method, due to the increased formation of long and large-diameter uncharged holes compared to blast holes. This modified LLB method used 30% less explosives, so its failure range was approximately 1.25 times less than that of the burn-cut method, but its advance was approximately 4 times larger than the burn-cut method, which was similar to the original LLB method. This confirmed that the modified LLB method is significantly more efficient in terms of increased blasting efficiency (particularly the advance per round) as well as reduced blast-induced vibration, compared to the traditional cut blasting method.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3