A Comparative Study of Forest Fire Mapping Using GIS-Based Data Mining Approaches in Western Iran

Author:

Mohammed Osama Ashraf,Vafaei SasanORCID,Kurdalivand Mehdi Mirzaei,Rasooli Sabri,Yao Chaolong,Hu TongxinORCID

Abstract

Mapping fire risk accurately is essential for the planning and protection of forests. This study aims to map fire risk (probability of ignition) in Marivan County of Kurdistan province, Iran, using the data mining approaches of the evidential belief function (EBF) and weight of evidence (WOE) models, with an emphasis placed on climatic variables. Firstly, 284 fire incidents in the region were randomly divided into two groups, including the training group (70%, 199 points) and the validation group (30%, 85 points). Given the previous studies and conditions of the region, the variables of slope percentage, slope direction, altitude, distance from rivers, distance from roads, distance from settlements, land use, slope curvature, rainfall, and maximum annual temperature were considered for zoning fire risk. Then, forest fire risk maps were prepared using the EBF and WOE models. The performance of each model was examined using the Relative Operating Characteristic (ROC) curve. The results showed that WOE and EBF are effective tools for mapping forest fire risks in the study area. However, the WOE model shows a slightly higher Area Under the Curve value (0.896) compared to that of the EBF model (0.886), indicating a slightly better performance. The results of this study can provide valuable information for preventing forest fires in the study area.

Funder

National Key Research and Development Program of China, Key Projects for Strategic International Innovative Cooperation in Science and Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3