Changing climate, vegetation, and fire disturbance in a sub-boreal pine-dominated forest, British Columbia, Canada

Author:

Brown Kendrick J.12,Hebda Nicholas J.12,Conder Nicholas1,Golinski Karen G.3,Hawkes Brad1,Schoups Gerrit4,Hebda Richard J.5

Affiliation:

1. Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada.

2. Earth and Environmental Sciences, University of British Columbia Okanagan, 1177 Research Road, Kelowna, BC V1V 1V7, Canada.

3. Smithsonian Conservation Biology Institute, Center for Conservation and Sustainability, 1100 Jefferson Drive SW, Suite 3123, Washington, DC 20560, USA.

4. Delft University of Technology, Department of Water Management, P.O. Box 5048, 2600 GA Delft, Netherlands.

5. Royal British Columbia Museum, 675 Belleville Street, Victoria, BC V8W 9W2, Canada.

Abstract

Holocene climate, vegetation, and fire history were reconstructed using pollen, molluscs, and charcoal from two lake sediment records (Scum and Norma lakes) collected from the Chilcotin Plateau, British Columbia, Canada. In the late-glacial period, cold steppe prevailed and fire was limited. Artemisia steppe expanded in the earliest Holocene as climate warmed and conditions became dry, with shallow basins drying out. High-frequency surface fires maintained the steppe. An increase in Pinus after 10 200 cal BP signals moistening and the establishment of Pinus ponderosa P. & C. Lawson and Pinus contorta Dougl. ex Loud. stands, with surface fires in the former and higher severity fires in the latter. Cooling around 8500 cal BP favored P. contorta, and a crown fire regime likely prevailed, with intermittent surface fires. Shallow basins began to fill with water. In the mid-Holocene, basins filled further and Picea increased slightly in abundance. Fire frequency decreased, though severity increased. In the last three millennia, modern P. contorta dominated forests were established, with mixed-severity fire disturbance. Considering the future, the results of this study align well with ecosystem climate niche simulations, indicating that non-arboreal and open-forest communities may again prevail widely on the plateau, together with surface fires. Land managers need to develop strategies to manage the upcoming transformation.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3