Cascade Reservoirs: An Exploration of Spatial Runoff Storage Sites for Water Harvesting and Mitigation of Climate Change Impacts, Using an Integrated Approach of GIS and Hydrological Modeling

Author:

Soomro Abdul Ghani,Shah Sabab AliORCID,Memon Anila Hameem,Alharabi Raied Saad,Memon Darya,Panhwar SallahuddinORCID,Keerio Hareef AhmedORCID

Abstract

Torrents play an essential role in water resources through rainfall in arid to semi-arid mountainous regions, serving large populations worldwide, and are also crucial in maintaining the downstream environment. The natural flows (floods, ephemeral flows) in arid hill regions result in potential hydrological fluctuations caused by climate change. However, the feasibility of eventual storage in remote hilly catchments would force a more sudden change. The current study was conducted in the lower part of the Khirthar National Range in the Sindh province of Pakistan, with the aim to explore spatial runoff storage sites for sustainable development to mitigate the impacts of climate change in arid areas. In total, 83 years of precipitation data were used to estimate water availability, along with satellite imagery for LULC pre- and post-monsoon conditions, delineation of watersheds, and identification of potential runoff storage locations and return periods, using Remote Sensing (RS)/Geographical Information System (GIS) 10.5.1, HEC-HMS 3.1, and Origin Pro 9.0 for statistical approaches. The model delineated two potential watersheds: Goth Sumar, covering an area of 61.0456 km2, wherein ten cascading reservoirs were identified, and Goth Baro, covering an area of 14,236 km2, wherein two cascading reservoirs were identified. Different storage capacities were determined for the cascade-type reservoirs. The maximum live volumetric potential storage of the reservoirs varies from 0.25 to 1.32 million cubic meters (MCM) in the villages of Baro and Sumar. The return periods have been estimated at 5, 10, 20, 25, 50, and 75 years, corresponding to 12.35, 16.47, 21.43, 21.72, 25.21, and 40.53 MCM for Goth Sumar, while Goth Baro’s storage capacity has been estimated at 2.88, 3.84, 5.00, 5.06, 5.88, and 9.45 MCM, respectively. All results obtained were authenticated using accuracy assessment, validation, and sensitivity analysis. The proposed potential storage sites were recommended for a planning period of five years. The live storage capacity of the identified cascade reservoirs can be improved by raising the marginal banks and developing the spillways to control inlet and outlet flow in order to maintain internal pressure on the reservoir banks. The stored water can be used for climate-friendly agricultural activities to increase crop production and productivity. The proposed study area has extensive experience with flood irrigation systems and rainwater harvesting to sustain agriculture due to rainfall being the only water resource (WR) in the region. However, the study area has enormous potential for surface runoff WRs, especially during the rainy season (monsoon); the current 2022 monsoon is showing flooding. The modeling approaches of Remote Sensing, GIS, and HEC-HMS play an important role in delineating watershed areas, developing hydrographs, and simulating water availability for different return periods by minimizing cost and time.

Funder

King Saud University, Riyadh, Saudi Arabia.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3