Abstract
Abstract
Reservoir operation is an important and effective measure for realizing optimal allocation of water resources. It can effectively alleviate regional scarcity of water resources, flood disasters and other social problems, and plays an important role in supporting sustainable strategic development of water resources. Coordinating the stakeholders is key to the smooth operation of a multifunctional reservoir. This research examines the competition among stakeholders of a multi-objective ecological reservoir operation aiming to provide for economic, social and ecological demands. A multi-objective game theory model (MOGM) specified 10-day water discharge to meet the triple water demands (power generation, socio-economic consumption and environment) for multi-purpose reservoir operation. The optimal operation of the Three Gorges Reservoir (TGR), with the ecological objective of providing comprehensive ecological flow demanded for some key ecological problems that may occur in the middle and lower reaches of the Yangtze River, was chosen as a case study. Discharged water calculated by the MOGM and a conventional multi-objective evolutionary algorithm/decomposition with a differential evolution operator was then allocated to different demands. The results illustrate the applicability and efficiency of the MOGM in balancing transboundary water conflicts in multi-objective reservoir operation that can provide guidance for the operation of the TGR.
Funder
the Fundamental Research Funds for the Central Universities
the National Key Plan for Research and Development of China
the Sichuan Province Cyclic Economy Research Center
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献