3D Object Recognition and Localization with a Dense LiDAR Scanner

Author:

Geng HaoORCID,Gao Zhiyuan,Fang Guorun,Xie Yangmin

Abstract

Dense scanning is an effective solution for refined geometrical modeling applications. The previous studies in dense environment modeling mostly focused on data acquisition techniques without emphasizing autonomous target recognition and accurate 3D localization. Therefore, they lacked the capability to output semantic information in the scenes. This article aims to make complementation in this aspect. The critical problems we solved are mainly in two aspects: (1) system calibration to ensure detail-fidelity for the 3D objects with fine structures, (2) fast outlier exclusion to improve 3D boxing accuracy. A lightweight fuzzy neural network is proposed to remove most background outliers, which was proven in experiments to be effective for various objects in different situations. With precise and clean data ensured by the two abovementioned techniques, our system can extract target objects from the original point clouds, and more importantly, accurately estimate their center locations and orientations.

Funder

Shanghai Natural Science Foundation

Shanghai Rising-Star Program

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference34 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3