Research on a Cross-Domain Few-Shot Adaptive Classification Algorithm Based on Knowledge Distillation Technology

Author:

Gao Jiuyang1,Li Siyu2,Xia Wenfeng1,Yu Jiuyang1ORCID,Dai Yaonan1ORCID

Affiliation:

1. Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China

2. School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430205, China

Abstract

With the development of deep learning and sensors and sensor collection methods, computer vision inspection technology has developed rapidly. The deep-learning-based classification algorithm requires the acquisition of a model with superior generalization capabilities through the utilization of a substantial quantity of training samples. However, due to issues such as privacy, annotation costs, and sensor-captured images, how to make full use of limited samples has become a major challenge for practical training and deployment. Furthermore, when simulating models and transferring them to actual image scenarios, discrepancies often arise between the common training sets and the target domain (domain offset). Currently, meta-learning offers a promising solution for few-shot learning problems. However, the quantity of supporting set data on the target domain remains limited, leading to limited cross-domain learning effectiveness. To address this challenge, we have developed a self-distillation and mixing (SDM) method utilizing a Teacher–Student framework. This method effectively transfers knowledge from the source domain to the target domain by applying self-distillation techniques and mixed data augmentation, learning better image representations from relatively abundant datasets, and achieving fine-tuning in the target domain. In comparison with nine classical models, the experimental results demonstrate that the SDM method excels in terms of training time and accuracy. Furthermore, SDM effectively transfers knowledge from the source domain to the target domain, even with a limited number of target domain samples.

Funder

Natural Science Foundation of Hubei Province

Science Foundation of Wuhan Institute of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3