Abstract
The prospect of joining titanium alloys to advanced ceramics and producing components with extraordinary and unique properties can expand the range of potential applications. This is extremely attractive in components for the automotive and aerospace industries where combining high temperature resistance, wear resistance and thermal stability with low density materials, good flowability and high oxidation resistance is likely. Therefore, a combination of distinct properties and characteristics that would not be possible through conventional production routes is expected. Due to the differences between the coefficients of thermal expansion (CTE) and Young's modulus of metals and ceramics, the most appropriate methods for such dissimilar bonding are brazing, diffusion bonding, and transient liquid phase (TLP) bonding. For the joining of titanium alloys to ceramics, brazing appears to be the most promising and cost-effective process although diffusion bonding and TLP bonding have clear advantages in the production of reliable joints. However, several challenges must be overcome to successfully produce these dissimilar joints. In this context, the purpose of this review is to point out the same challenges and the most recent advances that have been investigated to produce reliable titanium alloys and ceramic joints.
Subject
General Materials Science,Metals and Alloys
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献