Improved Understanding of Groundwater Storage Changes under the Influence of River Basin Governance in Northwestern China Using GRACE Data

Author:

Liu Xin,Hu LitangORCID,Sun Kangning,Yang Zhengqiu,Sun Jianchong,Yin Wenjie

Abstract

Groundwater is crucial for economic development in arid and semiarid areas. The Shiyang River Basin (SRB) has the most prominent water use issues in northwestern China, and overexploited groundwater resources have led to continuous groundwater-level decline. The key governance planning project of the SRB was issued in 2007. This paper synthetically combines remote-sensing data from Gravity Recovery and Climate Experiment (GRACE) data and precipitation, actual evapotranspiration, land use, and in situ groundwater-level data to evaluate groundwater storage variations on a regional scale. Terrestrial water storage anomalies (TWSA) and groundwater storage anomalies (GWSA), in addition to their influencing factors in the SRB since the implementation of the key governance project, are analyzed in order to evaluate the effect of governance. The results show that GRACE-derived GWS variations are consistent with in situ observation data in the basin, with a correlation coefficient of 0.68. The GWS in the SRB had a slow downward trend from 2003 to 2016, and this increased by 0.38 billion m³/year after 2018. As the meteorological data did not change significantly, the changes in water storage are mainly caused by human activities, which are estimated by using the principle of water balance. The decline in GWS in the middle and lower reaches of the SRB has been curbed since 2009 and has gradually rebounded since 2014. GWS decreased by 2.2 mm EWH (equivalent water height) from 2011 to 2016, which was 91% lower than that from 2007 to 2010. The cropland area in the middle and lower reaches of the SRB also stopped increasing after 2011 and gradually decreased after 2014, while the area of natural vegetation gradually increased, indicating that the groundwater level and associated ecology significantly recovered after the implementation of the project.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3