Remote Sensing-Guided Spatial Sampling Strategy over Heterogeneous Surface Ground for Validation of Vegetation Indices Products with Medium and High Spatial Resolution

Author:

Lv TingtingORCID,Zhou Xiang,Tao ZuiORCID,Sun Xiaoyu,Wang JinORCID,Li Ruoxi,Xie FutaiORCID

Abstract

Remote sensing (RS)-derived vegetation indices (VIs) with medium and high spatial resolution have emerged as a promising dataset for fine-scale ecosystem modeling and agricultural monitoring at local or global scales. Before they can be used as reliable inputs for other research, conducting in situ measurements for validation is very critical. However, the spatial heterogeneity due to the diversity of land cover and its spatial organization in the landscape increases the uncertainty of validation, so design of optimal sampling is an important basis for the reliability of the validation. In this paper, we propose an integrative stratified sampling strategy (INTEG-STRAT) based on normalized difference vegetation index (NDVI) data as prior knowledge. The basic idea is to realize a sampling optimization by determining the optimal combination of the spatial sampling method (e.g., simple random sampling (SRS), spatial system sampling (SYS), stratified sampling, generalized random tessellation stratified (GRTS), balanced acceptance sampling (BAS)) and spatial stratification scheme with an objective rule. The objective rule in this paper is to minimize the root mean square error (RMSE) of 10-fold cross validation between estimated values (sample are not included) and the corresponding values on prior knowledge. Relative precision, correlation coefficient, and RMSE are used to compare the effectiveness of the proposed sampling strategy with each sampling method without considering sampling optimization. After comparing, we find that the INTEG-STRAT requires fewer samples to become stable and has higher accuracy. At site 1, when the correlation coefficient between NDVI image and the simulated NDVI surface reached 80%, INTEG-STRAT needed only 70 sampling points while other methods require more sampling points. At the same time, INTEG-STRAT strategy has a smaller RMSE between the estimated values and the corresponding values on prior knowledge image. In general, INTEG-STRAT is an effective method in the selection of representative samples to support the validation of vegetation indices products with medium and high spatial resolution.

Funder

The National Key Research and Development Program of Chin

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3