Study on Optimal Sampling Analysis of Soil Moisture at Field Scale for Remote Sensing Applications

Author:

Wang Chunmei,Gu Xingfa,Wang Chunnuan,Yang Jian,Lu Yang,Chen Zou

Abstract

With the rapid development of soil moisture estimation techniques involving remote sensing technology, the sampling designs used in soil moisture research are very important. To estimate the rational sample number for measuring near-surface soil moisture (0–20 cm), a random combination method was used to study the relationship between the average measured soil moisture contents and the true values at given scales. Compared to classic statistics and stratified sampling, the random combination method easily obtained precision estimates from a small number of samples. Moreover, the random combination method was upscaled to further discuss the influence of the coefficient of variation and study-region scale on the rational sample numbers at different scales (2, 10, 20, 40, 80, and 160 m). The results showed that the rational sample numbers for measuring near-surface soil moisture at the 2, 10, 20, 40, 80, and 160 m scales were 2, 5, 5, 8, 20, and 42, respectively, under the relative error of 10% at the 95% confidence level. The rational sample numbers at different scales were proportional to the coefficient of variation and the regional scale.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference44 articles.

1. Remote sensing and scale transfering of levity parameters on earth surface;Renhua;Remote Sens. Land Resour.,1999

2. Simulation and correction of spatial scaling effects for leaf area index;Liangyun;J. Remote Sens.,2014

3. SMEX02: Field scale variability, time stability and similarity of soil moisture;Jacobs;Remote Sens. Environ.,2004

4. Soil moisture estimation and its influencing factors based on temporal stability on a semiarid sloped forestland;Mingzhu;Front. Earth Sci.,2021

5. Measurement and utilization of on-site soil moisture data;Georgakakos;J. Hydrol.,1996

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3