Exposure of Loggerhead Sea Turtle Nests to Waves in the Florida Panhandle

Author:

Ware MatthewORCID,Ceriani SimonaORCID,Long JosephORCID,Fuentes MarianaORCID

Abstract

Wave wash-over poses a significant threat to sea turtle nests, with sustained exposure to waves potentially resulting in embryonic mortality and altered hatchling locomotor function, size, and sex ratios. Identifying where and under what conditions wave exposure becomes a problem, and deciding what action(s) to take (if any), is a common issue for sea turtle managers. To determine the exposure of sea turtle nests to waves and identify potential impacts to hatchling productivity, we integrated a geographic information system with remote sensing and wave runup modeling across 40 nesting beaches used by the Northern Gulf of Mexico Loggerhead Recovery Unit. Our models indicate that, on average, approximately 50% of the available beach area and 34% of nesting locations per nesting beach face a significant risk of wave exposure, particularly during tropical storms. Field data from beaches in the Florida Panhandle show that 42.3% of all nest locations reported wave exposure, which resulted in a 45% and 46% decline in hatching and emergence success, respectively, relative to their undisturbed counterparts. Historical nesting frequency at each beach and modeled exposure to waves were considered to identify priority locations with high nesting density which either experience low risk of wave exposure, as these are good candidates for protection as refugia for sustained hatchling production, or which have high wave exposure where efforts to reduce impacts are most warranted. Nine beaches in the eastern Florida Panhandle were identified as priority sites for future efforts such as habitat protection or research and development of management strategies. This modeling exercise offers a flexible approach for a threat assessment integration into research and management questions relevant to sea turtle conservation, as well as for other beach species and human uses of the coastal environment.

Funder

Sea Turtle Conservancy

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3