Predicting Drug–Target Interactions Based on the Ensemble Models of Multiple Feature Pairs

Author:

Wang ChengORCID,Zhang Jun,Chen PengORCID,Wang Bing

Abstract

Backgroud: The prediction of drug–target interactions (DTIs) is of great significance in drug development. It is time-consuming and expensive in traditional experimental methods. Machine learning can reduce the cost of prediction and is limited by the characteristics of imbalanced datasets and problems of essential feature selection. Methods: The prediction method based on the Ensemble model of Multiple Feature Pairs (Ensemble-MFP) is introduced. Firstly, three negative sets are generated according to the Euclidean distance of three feature pairs. Then, the negative samples of the validation set/test set are randomly selected from the union set of the three negative sets in the validation set/test set. At the same time, the ensemble model with weight is optimized and applied to the test set. Results: The area under the receiver operating characteristic curve (area under ROC, AUC) in three out of four sub-datasets in gold standard datasets was more than 94.0% in the prediction of new drugs. The effectiveness of the proposed method is also shown with the comparison of state-of-the-art methods and demonstration of predicted drug–target pairs. Conclusion: The Ensemble-MFP can weigh the existing feature pairs and has a good prediction effect for general prediction on new drugs.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Emergence of In-Silico Models in Drug Target Interaction System: A Comprehensive Review;Biosciences Biotechnology Research Asia;2024-03-30

2. Prediction of Drug-Target Interactions Based on Multi-Modal Autoencoder;2023 16th International Conference on Advanced Computer Theory and Engineering (ICACTE);2023-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3