Analysis of a Serial/Parallel Type of Electromagnetic Actuator

Author:

Takei Kenta,Kitagawa Wataru,Takeshita Takaharu,Fujimura Yoshio

Abstract

This paper describes the design and analysis of a small-sized and high thrust electromagnetic actuator. The proposed actuator is supposed to be used for application control of the hotmelt adhesive. The hotmelt has different characteristics for each material and the electromagnetic actuator is required variable characteristics. However, the problem seems to lie in the fact that it is necessary to remake another mold again to change the characteristics of the conventional electromagnetic actuator. Therefore, this paper presents small-sized electromagnetic actuator called a basic model that can stack it in the axial direction or in the radial direction. As the analysis comparison at the same size, the characteristics of conventional two serial model which stack two basic models in the axial direction and proposed three serial models have been compared by three-dimensional finite element method. In the proposed model, characteristics have been improved by reducing the core volume and increasing the number of stacks in the basic model from the viewpoint of magnetic flux density. In addition, various electromagnetic actuators that stack basic models in the axial direction or in the radial direction have been analyzed. The analysis results have been clearly shown as characteristics mapping and it has indicated that the proposed electromagnetic actuator can be constructed easily by stacking the basic model.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. INFLUENCE OF THE POLES SHAPE OF DC ELECTROMAGNETIC ACTUATOR ON ITS THRUST CHARACTERISTIC;Tekhnichna Elektrodynamika;2024-01-31

2. Hybrid teaching-learning with comprehensive learning capability for electromagnetic device design problems;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2022-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3