Hybrid teaching-learning with comprehensive learning capability for electromagnetic device design problems

Author:

Niu Qun1ORCID,You Ming1ORCID,Hua Dandan1,Yang Zhile2

Affiliation:

1. School of Mechanical Engineering and Automation, Shanghai Key Laboratory of Power Station Automation Technology, Shanghai University, Shanghai, China

2. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China

Abstract

Many optimal design problems in the engineering field are nonlinear, multivariate, mixed integer, multimodal, and constrained. Meta-heuristic approaches have been widely used to solve these complex problems, but most of them are often sensitive to the settings of tuning parameters for different optimization problems, and suffer from premature convergence during the evolution process. This article proposes a novel hybrid teaching-learning-based optimization (HTLBO) algorithm to tackle this problem. A comprehensive teaching-learning mechanism with no adjustable parameters is introduced to improve the global optimal solution while in the meantime maintaining the solution diversity. The performance of the proposed HTLBO is tested on nine unconstrained benchmark functions and two nonlinear constrained benchmark functions with integer variables. Then the algorithm is applied to solve two significant electromagnetic design problems, that is, optimal brushless direct-current (BLDC) motor design and electromagnetic actuator geometric construction design. Simulation results on both the benchmark functions and practical engineering design problems confirm the efficiency and robustness of the proposed algorithm.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3