Improving Results of Existing Groundwater Numerical Models Using Machine Learning Techniques: A Review

Author:

Di Salvo CristinaORCID

Abstract

This paper presents a review of papers specifically focused on the use of both numerical and machine learning methods for groundwater level modelling. In the reviewed papers, machine learning models (also called data-driven models) are used to improve the prediction or speed process of existing numerical modelling. When long runtimes inhibit the use of numerical models, machine learning models can be a valid alternative, capable of reducing the time for model development and calibration without sacrificing accuracy of detail in groundwater level forecasting. The results of this review highlight that machine learning models do not offer a complete representation of the physical system, such as flux estimates or total water balance and, thus, cannot be used to substitute numerical models in large study areas; however, they are affordable tools to improve predictions at specific observation wells. Numerical and machine learning models can be successfully used as complementary to each other as a powerful groundwater management tool. The machine learning techniques can be used to improve calibration of numerical models, whereas results of numerical models allow us to understand the physical system and select proper input variables for machine learning models. Machine learning models can be integrated in decision-making processes when rapid and effective solutions for groundwater management need to be considered. Finally, machine learning models are computationally efficient tools to correct head error prediction of numerical models.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference117 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3