Application of Fault Diagnosis Method Combining Finite Element Method and Transfer Learning for Insufficient Turbine Rotor Fault Samples

Author:

Zhang Qinglei1,He Qunshan1,Qin Jiyun1,Duan Jianguo1

Affiliation:

1. China Institute of FTZ Supply Chain, Shanghai Maritime University, Shanghai 201306, China

Abstract

Deep learning has led to significant progress in the fault diagnosis of mechanical systems. These intelligent models often require large amounts of training data to ensure their generalization capabilities. However, the difficulty of obtaining turbine rotor fault data poses a new challenge for intelligent fault diagnosis. In this study, a turbine rotor fault diagnosis method based on the finite element method and transfer learning (FEMATL) is proposed, ensuring that the intelligent model can maintain high diagnostic accuracy in the case of insufficient samples. This method fully exploits the finite element method (FEM) and transfer learning (TL) for small-sample problems. First, FEM is used to generate data samples with fault information, and then the one-dimensional vibration displacement signal is transformed into a two-dimensional time-frequency diagram (TFD) by taking advantage of the deep learning model to recognize the image. Finally, a pre-trained ResNet18 network was used as the input to carry out transfer learning. The feature extraction layer of the network was trained on the ImageNet dataset and a fully connected layer was used to match the specific classification problems. The experimental results show that the method requires only a small amount of training data to achieve high diagnostic accuracy and significantly reduces the training time.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3