Fault Diagnosis of Bearings Using Wavelet Packet Energy Spectrum and SSA-DBN

Author:

Qu Jinglei12,Cheng Xueli12,Liang Ping1,Zheng Lulu12ORCID,Ma Xiaojie1

Affiliation:

1. School of Mechanical Engineering, Henan Institute of Technology, Xinxiang 453003, China

2. Mechanical and Electrical Equipment Digital Design and Manufacturing Engineering Technology Research Center of Henan Province, Henan Institute of Technology, Xinxiang 453003, China

Abstract

To enhance fault characteristics and improve fault detection accuracy in bearing vibration signals, this paper proposes a fault diagnosis method using a wavelet packet energy spectrum and an improved deep confidence network. Firstly, a wavelet packet transform decomposes the original vibration signal into different frequency bands, fully preserving the original signal’s frequency information, and constructs feature vectors by extracting the energy of sub-frequency bands via the energy spectrum to extract and enhance fault feature information. Secondly, to minimize the time-consuming manual parameter adjustment procedure and increase the diagnostic accuracy, the sparrow search algorithm–deep belief network method is proposed, which utilizes the sparrow search algorithm to optimize the hyperparameters of the deep belief networks and reduce the classification error rate. Finally, to verify the effectiveness of the method, the rolling bearing data from Casey Reserve University were selected for verification, and compared to other commonly used algorithms, the proposed method achieved 100% and 99.34% accuracy in two sets of comparative experiments. The experimental results demonstrate that this method has a high diagnostic rate and stability.

Funder

Key Scientific and Technological Project of Henan Province

Industry–University Cooperative Education Program of the Ministry of Education

Key Scientific Research Projects of the Higher Education Institutions of Henan Province

Doctoral Fund of Henan Institute of Technology

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3