Stochastic Finite Element Analysis Framework for Modelling Mechanical Properties of Particulate Modified Polymer Composites

Author:

Ahmadi Moghaddam HamidrezaORCID,Mertiny PierreORCID

Abstract

Polymers have become indispensable in many engineering applications because of their attractive properties, including low volumetric mass density and excellent resistance to corrosion. However, polymers typically lack in mechanical, thermal, and electrical properties that may be required for certain engineering applications. Therefore, researchers have been seeking to improve properties by modifying polymers with particulate fillers. In the research presented herein, a numerical modeling framework was employed that is capable of predicting the properties of binary or higher order composites with randomly distributed fillers in a polymer matrix. Specifically, mechanical properties, i.e., elastic modulus, Poisson’s ratio, and thermal expansion coefficient, were herein explored for the case of size-distributed spherical filler particles. The modeling framework, employing stochastic finite element analysis, reduces efforts for assessing material properties compared to experimental work, while increasing the level of accuracy compared to other available approaches, such as analytical methods. Results from the modeling framework are presented and contrasted with findings from experimental works available in the technical literature. Numerical predictions agree well with the non-linear trends observed in the experiments, i.e., elastic modulus predictions are within the experimental data scatter, while numerical data deviate from experimental Poisson’s ratio data for filler volume fractions greater than 0.15. The latter may be the result of morphology changes in specimens at higher filler volume fractions that do not comply with modelling assumptions.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3