Affiliation:
1. Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
Abstract
Polymer composites containing magnetic fillers are promising materials for a variety of applications, such as in energy storage and medical fields. To facilitate the engineering design of respective components, a comprehensive understanding of the mechanical behavior of such inhomogeneous and potentially highly anisotropic materials is important. Therefore, the authors created magnetic composites by compression molding. The epoxy polymer matrix was modified with a commercial-grade thickening agent. Isotropic magnetic particles were added as the functional filler. The microstructural morphology, especially the filler distribution, dispersion, and alignment, was characterized using microscopy techniques. The mechanical properties of the composites were experimentally characterized and studied by stochastic finite element analysis (SFEA). Modeling was conducted employing four cases to predict the elastic modulus: fully random distribution, randomly aligned distribution, a so-called “rough” interface contact, and a bonded interface contact. Results from experiments and SFEA modeling were compared and discussed.
Funder
Canada First Research Excellence Fund
China Scholarship Council
Subject
Polymers and Plastics,General Chemistry