Magnetic Filler Polymer Composites—Morphology Characterization and Experimental and Stochastic Finite Element Analyses of Mechanical Properties

Author:

Wang Yingnan1ORCID,Ahmadi Moghaddam Hamidreza1ORCID,Palacios Moreno Jorge1ORCID,Mertiny Pierre1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada

Abstract

Polymer composites containing magnetic fillers are promising materials for a variety of applications, such as in energy storage and medical fields. To facilitate the engineering design of respective components, a comprehensive understanding of the mechanical behavior of such inhomogeneous and potentially highly anisotropic materials is important. Therefore, the authors created magnetic composites by compression molding. The epoxy polymer matrix was modified with a commercial-grade thickening agent. Isotropic magnetic particles were added as the functional filler. The microstructural morphology, especially the filler distribution, dispersion, and alignment, was characterized using microscopy techniques. The mechanical properties of the composites were experimentally characterized and studied by stochastic finite element analysis (SFEA). Modeling was conducted employing four cases to predict the elastic modulus: fully random distribution, randomly aligned distribution, a so-called “rough” interface contact, and a bonded interface contact. Results from experiments and SFEA modeling were compared and discussed.

Funder

Canada First Research Excellence Fund

China Scholarship Council

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3