A Weekend Load Forecasting Model Based on Semi-Parametric Regression Analysis Considering Weather and Load Interaction

Author:

Li Bin,Lu Mingzhen,Zhang YiyiORCID,Huang Jia

Abstract

Compared to the load characteristics of normal working days, weekend load characteristics have a low level of load and are sensitive to meteorological conditions, which influences the accuracy of short-term weekend-load forecasting. To solve this problem and to improve the accuracy of short-term weekend-load forecasting, a Semi-parametric weekend-load forecasting method based on the interaction between meteorological and load is proposed in this paper. The main work is shown as follows: (1) through separating weekend-load from normal-load and analyzing the correlation between meteorological factors and daily maximum load, the meteorological factors with parameter characteristics and non-parameter characteristics can be screened out; (2) a short-term weekend-load forecasting model is built according to Semi-parametric regression theory which can express the coupling relation between meteorology and load more realistically; (3) the effect of temperature accumulation is also considered to correct the forecasting model. The proposed method is proved by implementing short-term weekend-load forecasting on the real historical data of the Southern Power Grid in China. The result shows that the 96-point mean load forecasting accuracy obtained by this model can meet the requirement of power network operation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference43 articles.

1. Temperature correction model research considering temperature cumula-tive effect in short-term load forecasting;Gao;Trans. China Electromech. Soc.,2015

2. An analysis of ac-accumulation effect of temperature in short-term load fore-casting;Li;Autom. Electr. Power Syst.,2009

3. Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs

4. Autoregressive with Exogenous Variables and Neural Network Short-Term Load Forecast Models for Residential Low Voltage Distribution Networks

5. A Novel Nonlinear Combined Forecasting System for Short-Term Load Forecasting

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3