Integration of Data-Driven Process Re-Engineering and Process Interdependency for Manufacturing Optimization Supported by Smart Structured Data

Author:

Khan Md Ashikul Alam,Butt JavaidORCID,Mebrahtu Habtom,Shirvani Hassan,Sanaei Alireza,Alam Mohammad Nazmul

Abstract

Process re-engineering and optimization in manufacturing industries is a big challenge because of process interdependencies characterized by a high failure rate. Research has shown that over 70% of approaches fail because of complexity as a result of process interdependencies during the implementation phase. This paper investigates data from a manufacturing operation and designs a filtration algorithm to analyze process interdependencies as a new approach for process optimization. The algorithm examines the data from a manufacturing process to identify limitations through cause and effect relationships and implements changes to achieve an optimized result. The proposed cause and effect approach of re-engineering is termed the Khan-Hassan-Butt (KHB) methodology, and it can filter the process interdependencies and use those as key decision-making tools. It provides an improved process optimization framework that incorporates data analysis along with a cause and effect algorithm to filter out the process interdependencies as an approach to increase output and reduce failure factors simultaneously. It also provides a framework for filtering the manufacturing data into smart structured data. Based on the proposed KHB methodology, the study investigated a production line process using the WITNESS Horizon 22 simulation package and analyzed the efficiency of the proposed approach for production optimization. A case study is provided that integrated the KHB methodology with data-driven process re-engineering to analyze the process interdependencies to use them as decision-making tools for production optimization.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

Reference35 articles.

1. BIM and Lean-Business Process Reengineering for Energy Management Optimization of Existing Building Stock;Chassiakos,2019

2. Business process reengineering for flexibility and innovation in manufacturing

3. Manufacturing optimization based on agile manufacturing and big data;Khan,2017

4. Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing

5. Smart manufacturing, manufacturing intelligence and demand-dynamic performance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3