Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing

Author:

Moyne James,Iskandar Jimmy

Abstract

Smart manufacturing (SM) is a term generally applied to the improvement in manufacturing operations through integration of systems, linking of physical and cyber capabilities, and taking advantage of information including leveraging the big data evolution. SM adoption has been occurring unevenly across industries, thus there is an opportunity to look to other industries to determine solution and roadmap paths for industries such as biochemistry or biology. The big data evolution affords an opportunity for managing significantly larger amounts of information and acting on it with analytics for improved diagnostics and prognostics. The analytics approaches can be defined in terms of dimensions to understand their requirements and capabilities, and to determine technology gaps. The semiconductor manufacturing industry has been taking advantage of the big data and analytics evolution by improving existing capabilities such as fault detection, and supporting new capabilities such as predictive maintenance. For most of these capabilities: (1) data quality is the most important big data factor in delivering high quality solutions; and (2) incorporating subject matter expertise in analytics is often required for realizing effective on-line manufacturing solutions. In the future, an improved big data environment incorporating smart manufacturing concepts such as digital twin will further enable analytics; however, it is anticipated that the need for incorporating subject matter expertise in solution design will remain.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference58 articles.

Cited by 175 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Practical algorithms for weakly flexible job scheduling for smart mold component process;Future Generation Computer Systems;2024-11

2. Use Cases of Digital Twin in Smart Manufacturing;Artificial Intelligence‐Enabled Digital Twin for Smart Manufacturing;2024-09-13

3. Blockchain application to the processes in material design, production, distribution, and disposal: A survey;Journal of Industrial Information Integration;2024-09

4. Autonomous hybrid optimization of a SiO2 plasma etching mechanism;Journal of Vacuum Science & Technology A;2024-06-28

5. Artificial intelligence enriched industry 4.0 readiness in manufacturing: the extended CCMS2.0e maturity model;Production & Manufacturing Research;2024-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3