Author:
Wu Linsong,Lu Zhenhui,Zhuang Chenglong,Chen Yu,Hu Ruihua
Abstract
This study presents the key mechanical and residual properties after high-temperature of different Nano SiO2 carbon fiber-reinforced concrete (NSCFRC) mixtures. A total of seven NSCFRC mixtures incorporating 0%–0.35% of carbon fiber by volume of concrete and 0%–2% Nano SiO2 by weight of the binder were studied. The key mechanical properties such as compressive strength, tensile strength, and flexural strength of NSCFRC with 0.25% carbon fiber and 1% NS were 6.8%, 20.3%, and 11.7% higher than PC (0% CFs, 0% NS), respectively. Scanning Electron Microscopy (SEM) shows that Nano SiO2 reduced the internal porosity and increased the compactness of the concrete matrix. Furthermore, the experimental result demonstrates that NSCFRC can improve the mechanical properties of concrete after high-temperature and equations were obtained to describe the evolution of residual properties at elevated temperatures. Results suggested that the effect of carbon fibers on the residual properties of concrete after high-temperature is less than steel fiber and polypropylene fiber. It was also indicated that adding appropriate Nano SiO2 to concrete is an effective means to improve the residual performance after high-temperature.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献