Experimental Study on Activation Energy and Microstructure of Nano- and Micro-Sized Pozzolanic Materials as Cementitious Composite Binder

Author:

Kim Won-Woo1,Moon Jae-Heum1

Affiliation:

1. Structural Research Division, KICT (Korea Institute of Civil Engineering and Building Technology), Il-san, Goyang-si 10223, Gyenggi-do, Republic of Korea

Abstract

Silicate-based nano- and micro-sized binders were used with ordinary Portland cement to evaluate their influence on the setting time, activation energy, mechanical properties, and microstructure. It was found that the setting time was reduced due to the pozzolanic reaction of the silicate-based binders and the densification of the microstructure. However, there is a lack of research on nano-sized pozzolanic materials. Therefore, in this study, research on activation energy and microstructure was conducted. The compressive strength increased owing to a reduction in the porosity in the microstructure, and activation energy also tended to decrease. Moreover, using both micro-silica and a small proportion of nano-silica was more effective in reducing the setting time and activation energy than using any of them individually. The study established that adding a small proportion of nano-silica could reduce the setting time and increase the compressive strength because it positively influenced the pozzolanic reaction and filled the pores between micro-silica and cement, which were composed of relatively larger particles, with smaller particles. Because nanomaterials may degrade flowability due to their large specific surface area, it is deemed necessary to consider the addition of chemical admixtures during mix design. A characteristic has been revealed when nanomaterials are used, and special attention to the particle size distribution characteristics is required because the imbalance in particle size distribution may increase the porosity inside the microstructure. Therefore, it is recommended to use micro-sized pozzolanic materials together when using nano-sized pozzolanic materials.

Funder

Ministry of Land, Infrastructure, and Transport/Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference34 articles.

1. Nanotechnology in the marketplace;Whatmore;Comput. Control. J.,1995

2. Composition of reactive powder concrete;Richard;Cem. Concr. Res.,1995

3. Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using 29Si NMR;Zanni;Cem. Concr. Res.,1996

4. The influence of micro-fillers on enhancement of concrete strength;Goldman;Cem. Concr. Res.,1993

5. Microstructure of cement mortar with nanoparticles;Li;Compos. Part B,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3