Accelerating Emergence of Aerial Swarm

Author:

Jia YongnanORCID,Li QingORCID,Zhang Zhaolong

Abstract

Herein, we present a methodology and framework for exploiting certain interdisciplinary studies that can particularly benefit from integration. In this paper, rigorous derivation of control theory and statistical analysis of simulation results are organically unified for testifying and optimizing the emergence of order in aerial swarming scenarios under free boundary conditions. Each Unmanned Aerial Vehicle (UAV) is regulated by a simplified mathematical model, based on which a distributed flocking protocol is proposed as a feasible solution for aerial swarms. On condition that the initial interaction network is connected, the LaSalle–Krasovskii invariance principle is implemented to verify the effectiveness of the above algorithm. However, most existing results on flocking are far from being engineering applications. A basic challenge is how to present a low-cost energy and time saving solution on account of the limited flight capability of these UAVs and real-time operational requirements. As is well known, energy consumption can be reduced if unnecessary interactions among individuals are eliminated. Therefore, another contribution of this paper is to propose a precise optimization of an existing flocking algorithm for UAVs with respect to interaction requirements. Energy and time measurements, as well as scalability effects, are assessed in terms of statistical significance and strength. The results indicate that the flocking control protocol adopting the minimal interaction is the most promising swarm.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Motion Control Strategy for Drone Swarms;2023 10th International Conference on Recent Advances in Air and Space Technologies (RAST);2023-06-07

2. Kinematic analysis of swarm robots for solar panel installation;IV INTERNATIONAL SCIENTIFIC FORUM ON COMPUTER AND ENERGY SCIENCES (WFCES II 2022);2023

3. Recent Advances in Swarm Robotics Coordination: Communication and Memory Challenges;Applied Sciences;2022-11-02

4. Modeling, analysis, and optimization of three-dimensional restricted visual field metric-free swarms;Chaos, Solitons & Fractals;2022-04

5. Modelling, Analysis, and Optimization of Three-Dimensional Restricted Visual Field Metric-Free Swarms;2021-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3