Call Graph and Model Checking for Fine-Grained Android Malicious Behaviour Detection

Author:

Iadarola GiacomoORCID,Martinelli Fabio,Mercaldo FrancescoORCID,Santone Antonella

Abstract

The increasing diffusion of mobile devices, widely used for critical tasks such as the transmission of sensitive and private information, corresponds to an increasing need for methods to detect malicious actions that can undermine our data. As demonstrated in the literature, the signature-based approach provided by antimalware is not able to defend users from new threats. In this paper, we propose an approach based on the adoption of model checking to detect malicious families in the Android environment. We consider two different automata representing Android applications, based respectively on Control Flow Graphs and Call Graphs. The adopted graph data structure allows to detect potentially malicious behaviour and also localize the code where the malicious action happens. We experiment the effectiveness of the proposed method evaluating more than 3000 real-world Android samples (with 2552 malware belonging to 21 malicious family), by reaching an accuracy ranging from 0.97 to 1 in malicious family detection.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference44 articles.

1. Investigate the Implication of “Self-service Business Intelligence (SSBI)”—A Big Data Trend in Today’s Business World;Bhat;Curr. Trends Inf. Technol.,2020

2. Big Data and Cloud Computing

3. Stuxnet: Dissecting a Cyberwarfare Weapon

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3