Android malware analysis and detection: A systematic review

Author:

Dahiya Anuradha1,Singh Sukhdip1,Shrivastava Gulshan2ORCID

Affiliation:

1. Department of CSE Deenbandhu Chhotu Ram University of Science and Technology Murthal India

2. Department of CSE Galgotias University Greater Noida India

Abstract

AbstractAndroid malware has been emerged as a significant threat, which includes exposure of confidential information, misrepresentation of facts and execution of applications without the knowledge of the users. Malware analysis plays an essential role in dealing with the unlawful behaviour of such malicious applications. Android malware analysis involves examining and understanding malware behaviour and its characteristics. It also includes potential adversarial impacts on Android devices. This paper presents a quick understanding and a holistic view of malware detection and analysis. The current investigation conducted a systematic literature review (SLR) to recognize the salient shifts in malware detection by examining a range of scholarly journals and conference papers. The SLR investigated 99 articles published between the years 2018 and 2023. The key observation of this SLR is that static analysis is the most implemented approach for detecting Android malware; Apktool and Androguard are the most frequently used tools. This study also conceded that deep learning and machine learning models have more potential to analyse the malicious behaviour of malware. Certain challenges are faced in Android malware analysis, that is, obfuscation techniques, dynamic code loading, and issues related to experimented datasets. Further, this study focuses on the following areas: the definition of the sample set, data optimisation and processing, feature extraction, machine learning application, and classifier validation. This investigation differs from previous analyses of Android malware detection by emphasizing additional methods based on machine learning.

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3