Wavenumber Imaging of Near-Surface Defects in Rails using Green’s Function Reconstruction of Ultrasonic Diffuse Fields

Author:

Zhang Hui,Zhang Haiyan,Zhang Jiayan,Liu Jianquan,Zhu Wenfa,Fan GuopengORCID,Zhu Qi

Abstract

Wavenumber imaging with Green’s function reconstruction of ultrasonic diffuse fields is used to realize fast imaging of near-surface defects in rails. Ultrasonic phased array has been widely used in industries because of its high sensitivity and strong flexibility. However, the directly measured signal is always complicated by noise caused by physical limitations of the acquisition system. To overcome this problem, the cross-correlations of the diffuse field signals captured by the probe are performed to reconstruct the Green’s function. These reconstructed signals can restore the early time information from the noise. Experiments were conducted on rails with near-surface defects. The results confirm the effectiveness of the cross-correlation method to reconstruct the Green’s function for the detection of near-surface defects. Different kinds of ultrasonic phased array probes were applied to collect experimental data on the surface of the rails. The Green’s function recovery is related to the number of phased array elements and the excitation frequency. In addition, the duration and starting time of the time-windowed diffuse signals were explored in order to achieve high-quality defect images.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Passive ultrasonic sensing for NDT and SHM;Health Monitoring of Structural and Biological Systems XVIII;2024-05-09

2. Ultrasparse Ultrasonic Synthetic Aperture Focus Imaging by Passive Sensing;IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control;2024-05

3. Measurement and Characterisation of a Diffuse Acoustic Field Using a Phased Array;Chinese Journal of Mechanical Engineering;2021-12

4. Ultrasonic Image Restoration Algorithm for Prevention of Nervous Disorders during the Recovery Period of Patients Receiving Sevoflurane Anesthesia;Journal of Healthcare Engineering;2021-10-01

5. Time-Domain Topological Energy Imaging Method of Concrete Cavity Defect by Lamb Wave;Shock and Vibration;2019-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3