Time-Domain Topological Energy Imaging Method of Concrete Cavity Defect by Lamb Wave

Author:

Zhu Wen-Fa12ORCID,Shao Wei1,Peng Le-Le1,Fan Guo-Peng1,Chen Xing-Jie1,Zheng Shu-Bin1,Zhang Hai-Yan3

Affiliation:

1. School of Urban Rail Transportation, Shanghai University of Engineering Science, Shanghai 201620, China

2. School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China

3. School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China

Abstract

This paper presents an ultrasonic Lamb wave imaging method based on time-domain topological energy to address artifacts in the results of traditional ultrasound imaging methods. This method is based on topological theory and the calculation of the direct and adjoint sound fields in a defect-free reference medium. It focuses the direct and adjoint sound fields at the cavity defect using time reversal and their time-domain topological energy as the pixel values of the image to reduce the artifacts. The physical mechanism of time-domain topological energy (TDTE) imaging is revealed by finite element simulation and experiment. The feasibility of this method for multilayer concrete cavity defect imaging is verified. Compared with the traditional synthetic aperture focusing technique (SAFT) imaging method, the numerical simulation and experimental results show that the method can overcome the influence of ultrasonic Lamb wave dispersion and locate cavity defects with high accuracy and few artifacts. These features indicate the potential of the method in imaging damage concrete structures.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3