Design and Implementation of Intelligent EOD System Based on Six-Rotor UAV

Author:

Fan JiweiORCID,Lu RuitaoORCID,Yang Xiaogang,Gao Fan,Li Qingge,Zeng Jun

Abstract

Explosive ordnance disposal (EOD) robots can replace humans that work in hazardous environments to ensure worker safety. Thus, they have been widely developed and deployed. However, existing EOD robots have some limitations in environmental adaptation, such as a single function, slow action speed, and limited vision. To overcome these shortcomings and solve the uncertain problem of bomb disposal on the firing range, we have developed an intelligent bomb disposal system that integrates autonomous unmanned aerial vehicle (UAV) navigation, deep learning, and other technologies. For the hardware structure of the system, we design an actuator constructed by a winch device and a mechanical gripper to grasp the unexploded ordnance (UXO), which is equipped under the six-rotor UAV. The integrated dual-vision Pan-Tilt-Zoom (PTZ) pod is applied in the system to monitor and photograph the deployment site for dropping live munitions. For the software structure of the system, the ground station exploits the YOLOv5 algorithm to detect the grenade targets for real-time video and accurately locate the landing point of the grenade. The operator remotely controls the UAV to grasp, transfer, and destroy grenades. Experiments on explosives defusal are performed, and the results show that our system is feasible with high recognition accuracy and strong maneuverability. Compared with the traditional mode of explosives defusal, the system can provide decision-makers with accurate information on the location of the grenade and at the same time better mitigate the potential casualties in the explosive demolition process.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3