Abstract
Convolutional Neural Networks (CNN) have been rigorously studied for Hyperspectral Image Classification (HSIC) and are known to be effective in exploiting joint spatial-spectral information with the expense of lower generalization performance and learning speed due to the hard labels and non-uniform distribution over labels. Therefore, this paper proposed an idea to enhance the generalization performance of CNN for HSIC using soft labels that are a weighted average of the hard labels and uniform distribution over ground labels. The proposed method helps to prevent CNN from becoming over-confident. We empirically show that, in improving generalization performance, regularization also improves model calibration, which significantly improves beam-search. Several publicly available Hyperspectral datasets are used to validate the experimental evaluation, which reveals improved performance as compared to the state-of-the-art models with overall 99.29%, 99.97%, and 100.0% accuracy for Indiana Pines, Pavia University, and Salinas dataset, respectively.
Subject
General Earth and Planetary Sciences
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献