Abstract
Rapid urban growth processes give rise to impervious surfaces and are regarded as the primary cause of urban flooding or waterlogging in urban areas. The high rate of urbanization has caused waterlogging and urban flooding in many parts of Dhaka city. Therefore, the study is undertaken to quantify the changes in land use/land cover (LULC) and urban runoff extent based on the Natural Resources Conservation Service (NRCS) Curve Number (CN) during 1978–2018. The five-decadal LULC has been analyzed using three-generation Landsat time-series data considering six different classes, namely agriculture, built-up, wetland, open land, green spaces, and water bodies for the years 1978, 1988, 1998, 2007, and 2018. Significant changes in LULC for the study area from 1978–2018 are observed as 13.1%, 4.8%, and 7.8% reduction in agricultural land, green spaces, and water bodies, respectively, and a 22.1% increase in the built-up area is estimated. Within Dhaka city, 14.6%, 16.0%, and 12.3% reduction in agricultural land, green spaces, and water bodies, respectively, and a radical increase of 41.9% in built-up area are reckoned. The decadal runoff assessment has been carried out using the NRCS-CN method, considering an extreme rainfall event of 341 mm/day (13 September 2004). The catchment area under very high runoff category is observed as 159.5 km2 (1978) and 318.3 km2 (2018), whereas, for Dhaka city, the setting is dynamic as the area under the very high runoff category has increased from 74.24 km2 (24.44%) to 174.23 km2 (57.36%) in years 1978 and 2018, respectively, and, mostly, the very high runoff potential areas correspond to the dense built-up surfaces.
Subject
General Earth and Planetary Sciences