Canopy Density and Roughness Differentiate Resistance of a Tropical Dry Forest to Major Hurricane Damage

Author:

Gao Qiong,Yu Mei

Abstract

Tropical dry forest is vulnerable to increased climate variability with more frequent and severe storms. Studies of hurricane impact on tropical dry forest often focused on individual tree traits. How trees in tropical dry forests work together to combat wind damage is still unclear. To address this, we integrated ground-observed ecosystem structure from National Ecological Observation Network (NEON) with airborne-LiDAR images and analyzed resistance in forest structure of Guánica dry forest in Puerto Rico to major hurricanes in 2017 at the forest-stand level. Using each plot instead of the individual tree as the base unit, we regressed mean changes in stem height and fractions of lost or damaged stems at 15 plots on mean stem diameter, mean and standard deviation of stem height, stem density, and topography. Meanwhile, using the LiDAR-derived canopy heights, we compared the changes in canopy height before and after the hurricanes and regressed spatially the canopy height change on prior-hurricane tree cover, canopy height, and rugosity. We found that the damage was small in places with high stem density or high tree cover. Ground-observed damage in terms of height reduction significantly increased with the standard deviation of stem height, an index of roughness, but decreased with the mean stem diameter of the plots. LiDAR-detected damage in terms of reduction in canopy height was also found to decrease with tree cover and mean canopy height when the canopy height was small or moderate but increase with the rugosity. The fraction of lost stems significantly decreased with the stem density, and the fraction of damaged stems significantly increased with the roughness and the plot elevation. The collective parameters of forest stand quantified from ground-observation and LiDAR, such as stem density, tree cover, and canopy roughness or rugosity, highlighted mutual supports of trees and played important roles in resisting damages to the tropical dry forest during major hurricanes.

Funder

National Aeronautics and Space Administration

National Oceanic and Atmospheric Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3