Assessment of Surface Inundation Monitoring and Drivers after Major Storms in a Tropical Island

Author:

Yu Mei1,Gao Qiong1

Affiliation:

1. Department of Environmental Sciences, University of Puerto Rico, Rio Piedras, San Juan, PR 00925, USA

Abstract

Extreme climate events such as storms and severe droughts are becoming more frequent under the warming climate. In the tropics, excess rainfall carried by hurricanes causes massive flooding and threatens ecosystems and human society. We assessed recent major floodings on the tropical island of Puerto Rico after Hurricane Maria in 2017 and Hurricane Fiona in 2022, both of which cost billions of dollars damages to the island. We analyzed the Sentinel-1 synthetic aperture radar (SAR) images right after the hurricanes and detected surface inundation extent by applying a random forest classifier. We further explored hurricane rainfall patterns, flow accumulation, and other possible drivers of surface inundation at watershed scale and discussed the limitations. An independent validation dataset on flooding derived from high-resolution aerial images indicated a high classification accuracy with a Kappa statistic of 0.83. The total detected surface inundation amounted to 10,307 ha after Hurricane Maria and 7949 ha after Hurricane Fiona for areas with SAR images available. The inundation patterns are differentiated by the hurricane paths and associated rainfall patterns. We found that flow accumulation estimated from the interpolated Fiona rainfall highly correlated with the ground-observed stream discharges, with a Pearson’s correlation coefficient of 0.98. The detected inundation extent was found to depend strongly on hurricane rainfall and topography in lowlands within watersheds. Normal climate, which connects to mean soil moisture, also contributed to the differentiated flooding extent among watersheds. The higher the accumulated Fiona rain and the lower the mean elevation in the flat lowlands, the larger the detected surface flooding extent at the watershed scale. Additionally, the drier the climate, which might indicate drier soils, the smaller the surface flooding areas. The approach used in this study is limited by the penetration capability of C-band SAR; further application of L-band images would expand the detection to flooding under dense vegetation. Detecting flooding by applying machine learning techniques to SAR satellite images provides an effective, efficient, and reliable approach to flood assessment in coastal regions on a large scale, hence helping to guide emergency responses and policy making and to mitigate flooding disasters.

Funder

NOAA Puerto Rico Sea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3