Abstract
Plant growth is not solely determined by the net photosynthetic rate (A), but also influenced by the amount of leaves as a photosynthetic apparatus. To evaluate growth responses to CO2 and O3, we investigated the effects of elevated CO2 (550–560 µmol mol−1) and O3 (52 nmol mol−1; 1.7 × ambient O3) on photosynthesis and biomass allocation in seedlings of Japanese white birch (Betula platyphylla var. japonica) grown in a free-air CO2 and O3 exposure system without any limitation of root growth. Total biomass was enhanced by elevated CO2 but decreased by elevated O3. The ratio of root to shoot (R:S ratio) showed no difference among the treatment combinations, suggesting that neither elevated CO2 nor elevated O3 affected biomass allocation in the leaf. Accordingly, photosynthetic responses to CO2 and O3 might be more important for the growth response of Japanese white birch. Based on A measured under respective growth CO2 conditions, light-saturated A at a light intensity of 1500 µmol m−2 s−1 (A1500) in young leaves (ca. 30 days old) exhibited no enhancement by elevated CO2 in August, suggesting photosynthetic acclimation to elevated CO2. However, lower A1500 was observed in old leaves (ca. 60 days old) of plants grown under elevated O3 (regulated to be twice ambient O3). Conversely, light-limited A measured under a light intensity of 200 µmol m−2 s−1 (A200) was significantly enhanced by elevated CO2 in young leaves, but suppressed by elevated O3 in old leaves. Decreases in total biomass under elevated O3 might be attributed to accelerated leaf senescence by O3, indicated by the reduced A1500 and A200 in old leaves. Increases in total biomass under elevated CO2 might be attributed to enhanced A under high light intensities, which possibly occurred before the photosynthetic acclimation observed in August, and/or enhanced A under limiting light intensities.
Funder
Japan Society for the Promotion of Science
Reference53 articles.
1. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,2007
2. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2013
3. Projection of surface ozone over East Asia in 2020
4. Ozone pollution in the North China Plain spreading into the late-winter haze season
5. Air pollutant levels are 12 times higher than guidelines in Varanasi, India. Sources and transfer
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献