A global meta-analysis of woody plant responses to elevated CO2: implications on biomass, growth, leaf N content, photosynthesis and water relations

Author:

Mndela MthunziORCID,Tjelele Julius T.,Madakadze Ignacio C.,Mangwane Mziwanda,Samuels Igshaan M.,Muller Francuois,Pule Hosia T.

Abstract

Abstract Background Atmospheric CO2 may double by the year 2100, thereby altering plant growth, photosynthesis, leaf nutrient contents and water relations. Specifically, atmospheric CO2 is currently 50% higher than pre-industrial levels and is projected to rise as high as 936 μmol mol−1 under worst-case scenario in 2100. The objective of the study was to investigate the effects of elevated CO2 on woody plant growth, production, photosynthetic characteristics, leaf N and water relations. Methods A meta-analysis of 611 observations from 100 peer-reviewed articles published from 1985 to 2021 was conducted. We selected articles in which elevated CO2 and ambient CO2 range from 600–1000 and 300–400 μmol mol−1, respectively. Elevated CO2 was categorized into < 700, 700 and > 700 μmol mol−1 concentrations. Results Total biomass increased similarly across the three elevated CO2 concentrations, with leguminous trees (LTs) investing more biomass to shoot, whereas non-leguminous trees (NLTs) invested to root production. Leaf area index, shoot height, and light-saturated photosynthesis (Amax) were unresponsive at < 700 μmol mol−1, but increased significantly at 700 and > 700 μmol mol−1. However, shoot biomass and Amax acclimatized as the duration of woody plants exposure to elevated CO2 increased. Maximum rate of photosynthetic Rubisco carboxylation (Vcmax) and apparent maximum rate of photosynthetic electron transport (Jmax) were downregulated. Elevated CO2 reduced stomatal conductance (gs) by 32% on average and increased water use efficiency by 34, 43 and 63% for < 700, 700 and > 700 μmol mol−1, respectively. Leaf N content decreased two times more in NLTs than LTs growing at elevated CO2 than ambient CO2. Conclusions Our results suggest that woody plants will benefit from elevated CO2 through increased photosynthetic rate, productivity and improved water status, but the responses will vary by woody plant traits and length of exposure to elevated CO2.

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3