Authigenic Clay Minerals from Interface Reactions of Concrete-Clay Engineered Barriers: A New Perspective on Mg-Clays Formation in Alkaline Environments

Author:

Cuevas Jaime,Ruiz Ana,Fernández Raúl,González-Santamaría Daniel,Angulo María,Ortega Almudena,Torres Elena,Turrero María

Abstract

Artificial and singular geochemical environments are created around the engineered barrier systems (EBS) designed to isolate high level nuclear wastes in deep geological repositories. A concrete-bentonite interface takes place within the EBS and it builds a significant chemical gradient (pH), approximately from pH 8 (bentonite) to pH 12 (low alkali concrete), in a few millimetre thickness. This disequilibrium triggers dissolution and precipitation reactions and form a thin altered region. In this area, poorly ordered authigenic clay minerals, mainly hydrated magnesium silicates, are formed adjacent to hydrated calcium silicates and calcite precipitates adhered to the interface with concrete. This paper presents the development of this authigenic mineral layer comparing 6–18 months to 13 years interfaces. Scanning Electron Microscopy with Energy Dispersive X-ray spectroscopy (SEM-EDX) morphological and chemical characterization with the aid of ternary plots, X-ray diffraction (XRD) and infrared (IR) data show the young to old interface evolution from single brucite layers to stevensite-saponite silicates composition. Geochemical calculations indicate that this layer acts as a pH~11 buffer useful to minimize bentonite alteration and to favour the retention of amphoteric metal ions.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference55 articles.

1. Analysis of the porewater chemical composition of a Spanish compacted bentonite used in an engineered barrier

2. Mechanisms of cement hydration

3. The Behaviours of Cementitious Materials in Long Term Storage and Disposal of Radioactive Waste,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3