Origin of Platinum Group Minerals (PGM) Inclusions in Chromite Deposits of the Urals

Author:

Zaccarini Federica,Garuti Giorgio,Pushkarev Evgeny,Thalhammer Oskar

Abstract

This paper reviews a database of about 1500 published and 1000 unpublished microprobe analyses of platinum-group minerals (PGM) from chromite deposits associated with ophiolites and Alaskan-type complexes of the Urals. Composition, texture, and paragenesis of unaltered PGM enclosed in fresh chromitite of the ophiolites indicate that the PGM formed by a sequence of crystallization events before, during, and probably after primary chromite precipitation. The most important controlling factors are sulfur fugacity and temperature. Laurite and Os–Ir–Ru alloys are pristine liquidus phases crystallized at high temperature and low sulfur fugacity: they were trapped in the chromite as solid particles. Oxygen thermobarometry supports that several chromitites underwent compositional equilibration down to 700 °C involving increase of the Fe3/Fe2 ratio. These chromitites contain a great number of PGM including—besides laurite and alloys—erlichmanite, Ir–Ni–sulfides, and Ir–Ru sulfarsenides formed by increasing sulfur fugacity. Correlation with chromite composition suggests that the latest stage of PGM crystallization might have occurred in the subsolidus. If platinum-group elements (PGE) were still present in solid chromite as dispersed atomic clusters, they could easily convert into discrete PGM inclusions splitting off the chromite during its re-crystallization under slow cooling-rate. The presence of primary PGM inclusions in fresh chromitite of the Alaskan-type complexes is restricted to ore bodies crystallized in equilibrium with the host dunite. The predominance of Pt–Fe alloys over sulfides is a strong indication for low sulfur fugacity, thereby early crystallization of laurite is observed only in one deposit. In most cases, Pt–Fe alloys crystallized and were trapped in chromite between 1300 and 1050 °C. On-cooling equilibration to ~900 °C may produce lamellar unmixing of different Pt–Fe phases and osmium. Precipitation of the Pt–Fe alloys locally is followed by an increase of sulfur fugacity leading to crystallize erlichmanite and Ir–Rh–Ni–Cu sulfides, occurring as epitaxic overgrowth on the alloy. There is evidence that the system moved quickly into the stabilization field of Pt–Fe alloys by an increase of the oxygen fugacity marked by an increase of the magnetite component in the chromite. In summary, the data support that most of the primary PGM inclusions in the chromitites of the Urals formed in situ, as part of the chromite precipitation event. However, in certain ophiolitic chromitites undergoing annealing conditions, there is evidence for subsolidus crystallization of discrete PGM from PGE atomic-clusters occurring in the chromite. This mechanism of formation does not require a true solid solution of PGE in the chromite structure.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference60 articles.

1. The origin of the fractionation of platinum-group elements in terrestrial magmas

2. Geochemistry of the Platinum-Group Elements;Crocket,1981

3. Mineralogy of platinum-group mineral inclusions in chromitites from different ophiolite complexes;Legendre,1986

4. Palladium, platinum, rhodium, ruthenium, and iridium in chromitites from the Massif du Sud and Tiebaghi Massif, New Caledonia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3