Inclusions in Placer Pt-Fe Alloy Nuggets, Northwest Ecuador: Evolution of a Ural-Alaskan Type PGE Mineralizing System (Cr-Spinel, IPGE, Sulfarsenides, and Cu-Depleted PGM)

Author:

Barron B. Jane12,Barron Lawrence M.3,Goemann Karsten4

Affiliation:

1. School of Biological, Earth & Environmental Sciences (BEES), University of New South Wales (UNSW), High Street, Kensington, Sydney, New South Wales 2052, Australia

2. *Current address: 7 Fairview Avenue, St Ives Chase, NSW, Australia 2075

3. The Australian Museum, 1 William Street, Sydney, Australia

4. SEM & X-Ray Microanalysis, Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, Tasmania 7001, Australia

Abstract

Abstract A Cu- and Rh-enriched magmatic ore system is defined by abundant PGM (platinum group mineral) inclusions in forty-four Pt-Fe alloy nuggets from the Camumbi River gold placer, northwest Ecuador. Isoferroplatinum is depleted in Rh, Os, and Ru compared with native platinum, suggesting most crystallized after Os-(Ir) alloy, laurite, and some Rh-PGM. Two Pt-Fe alloy nuggets have zoned hydrothermal alteration rinds, and an UM (unnamed mineral) is (Rh,Pd)4As3. Our previous work shows that silicate glass inclusions define a fractionated co-magmatic compositional series related to primitive hydrous ferrobasalt, and trace element chemistry matches their Late Cretaceous accreted volcanic arc terrane. Here we report exceptional Cr-spinel (Ural-Alaskan type) inclusions coexisting with primitive ferrobasaltic glass crystallized at highest T. Laurite inclusions also indicate high T and S saturation of early melt. Os-(Ir) inclusions are Ru-depleted while two discrete Ir-enriched osmium crystals have remarkable, extreme Ru enrichment and depletion, confirming crystallization before and after laurite. Laurite and osmium inclusions in one Pt-Fe alloy reflect concomitant crystallization and fluctuating low fS2 melt conditions. In experimental primitive Cu-bearing Pt-Pd-S-(As) melt (cf. exsolved from primitive basalt), first Cu-PGM-sulfide crystallization generates a Cu-depleted, Pt-Pd-As-(S) residual melt. At lower T immiscible melts Pt-As-(S) and later Pd-As-(S) crystallize distinctive PGM. We report analogous natural multiphase PGM inclusion assemblages in separate isoferroplatinum nuggets: (1) zoned sulfarsenides, sperrylite, and genkinite, with rare resorbed cognate xenocrystic cooperite (captured from primary sulfide melt) define a high T, Pt-enriched sub-system [Pt > Rh(Pd,Ir,Ru)As,S ≫ Sb,Bi] and (2) zoned sulfarsenides, arsenopalladinite, sperrylite, törnroosite, and gold define a lower T, fractionated Pd-enriched sub-system [(Pd > Rh ≃ Pt > Ir > Au)As,S > Te ≫ Sb,Bi]. The previously undocumented natural S-rich sperrylite (formerly “platarsite”) solid solution series and later crystallized irarsite series are discriminated in terms of Pt-Ir-Rh. Both trends fractionate toward increasing Rh (hollingworthite). The discrete PGM assemblage, sperrylite-telluropalladinite (with exsolved palladium and electrum) defines an IPGE-depleted Pd > Pt(Au > Ag)As ≥ Te ≥ Sb sub-system and records extreme fractionation. Cu-bearing multiphase PGM inclusions (some coexisting with silicate glass) derived from the fraction of Cu-bearing exsolved Pt-Pd-S-(As) melt will be reported separately.

Publisher

Mineralogical Association of Canada

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3