Optimizing Appearance-Based Localization with Catadioptric Cameras: Small-Footprint Models for Real-Time Inference on Edge Devices

Author:

Rostkowska Marta1ORCID,Skrzypczyński Piotr1ORCID

Affiliation:

1. Institute of Robotics and Machine Intelligence, Poznan University of Technology, 60-965 Poznan, Poland

Abstract

This paper considers the task of appearance-based localization: visual place recognition from omnidirectional images obtained from catadioptric cameras. The focus is on designing an efficient neural network architecture that accurately and reliably recognizes indoor scenes on distorted images from a catadioptric camera, even in self-similar environments with few discernible features. As the target application is the global localization of a low-cost service mobile robot, the proposed solutions are optimized toward being small-footprint models that provide real-time inference on edge devices, such as Nvidia Jetson. We compare several design choices for the neural network-based architecture of the localization system and then demonstrate that the best results are achieved with embeddings (global descriptors) yielded by exploiting transfer learning and fine tuning on a limited number of catadioptric images. We test our solutions on two small-scale datasets collected using different catadioptric cameras in the same office building. Next, we compare the performance of our system to state-of-the-art visual place recognition systems on the publicly available COLD Freiburg and Saarbrücken datasets that contain images collected under different lighting conditions. Our system compares favourably to the competitors both in terms of the accuracy of place recognition and the inference time, providing a cost- and energy-efficient means of appearance-based localization for an indoor service robot.

Funder

Poznań University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3