Drought Severity and Frequency Analysis Aided by Spectral and Meteorological Indices in the Kurdistan Region of Iraq

Author:

Gaznayee Heman Abdulkhaleq A.ORCID,Al-Quraishi Ayad M. FadhilORCID,Mahdi KarrarORCID,Messina Joseph P.ORCID,Zaki Sara H.,Razvanchy Hawar Abdulrzaq S.,Hakzi KawaORCID,Huebner LorenzORCID,Ababakr Snoor H.,Riksen MichelORCID,Ritsema Coen

Abstract

In the past two decades, severe drought has been a recurrent problem in Iraq due in part to climate change. Additionally, the catastrophic drop in the discharge of the Tigris and Euphrates rivers and their tributaries has aggravated the drought situation in Iraq, which was formerly one of the most water-rich nations in the Middle East. The Kurdistan Region of Iraq (KRI) also has catastrophic drought conditions. This study analyzed a Landsat time-series dataset from 1998 to 2021 to determine the drought severity status in the KRI. The Modified Soil-Adjusted Vegetation Index (MSAVI2) and Normalized Difference Water Index (NDWI) were used as spectral-based drought indices to evaluate the severity of the drought and study the changes in vegetative cover, water bodies, and precipitation. The Standardized Precipitation Index (SPI) and the Spatial Coefficient of Variation (CV) were used as meteorologically based drought indices. According to this study, the study area had precipitation deficits and severe droughts in 2000, 2008, 2012, and 2021. The MSAVI2 results indicated that the vegetative cover decreased by 36.4%, 39.8%, and 46.3% in 2000, 2008, and 2012, respectively. The SPI’s results indicated that the KRI experienced droughts in 1999, 2000, 2008, 2009, 2012, and 2021, while the southeastern part of the KRI was most affected by drought in 2008. In 2012, the KRI’s western and southern parts were also considerably affected by drought. Furthermore, Lake Dukan (LD), which lost 63.9% of its surface area in 1999, experienced the most remarkable shrinkage among water bodies. Analysis of the geographic distribution of the CV of annual precipitation indicated that the northeastern parts, which get much more precipitation, had less spatial rainfall variability and more uniform distribution throughout the year than other areas. Moreover, the southwest parts exhibited a higher fluctuation in annual spatial variation. There was a statistically significant positive correlation between MSAVI2, SPI, NDWI, and agricultural yield-based vegetation cover. The results also revealed that low precipitation rates are always associated with declining crop yields and LD shrinkage. These findings may be concluded to provide policymakers in the KRI with a scientific foundation for agricultural preservation and drought mitigation.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3