Analyzing Temporal Patterns of Temperature, Precipitation, and Drought Incidents: A Comprehensive Study of Environmental Trends in the Upper Draa Basin, Morocco

Author:

El Qorchi Fadoua1,Yacoubi Khebiza Mohammed1,Omondi Onyango Augustine2,Karmaoui Ahmed3ORCID,Pham Quoc Bao4ORCID,Acharki Siham5ORCID

Affiliation:

1. Laboratory of Water, Biodiversity and Climate Change (WBCC), Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco

2. International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China

3. Bioactives (Health and Environmental, Epigenetics Team), Faculty of Sciences and Techniques (Errachidia, UMI), Moroccan Center for Culture and Sciences, University Moulay Ismail, Meknes 50050, Morocco

4. Faculty of Natural Sciences, Institute of Earth Sciences, University of Silesia in Katowice, Będzińska Street 60, 41-200 Sosnowiec, Poland

5. Department of Earth Sciences, Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tetouan 93000, Morocco

Abstract

Quantifying variation in precipitation and drought in the context of a changing climate is important to assess climate-induced changes and propose feasible mitigation strategies, particularly in agrarian economies. This study investigates the main characteristics and historical drought trend for the period 1980–2016 using the Standard Precipitation Index (SPI), Standard Precipitation Evaporation Index (SPEI), Run Theory and Mann–Kendall Trend Test at seven stations across the Upper Draa Basin. The results indicate that rainfall has the largest magnitude over the M’semrir and Agouim (>218 mm/pa) and the lowest in the Agouilal, Mansour Eddahbi Dam, and Assaka subregions (104 mm–134 mm/pa). The annual rainfall exhibited high variability with a coefficient of variation between 35−57% and was positively related to altitude with a correlation coefficient of 0.86. However, no significant annual rainfall trend was detected for all stations. The drought analysis results showed severe drought in 1981–1984, 2000–2001, and 2013–2014, with 2001 being the driest year during the study period and over 75% of both SPEI and SPI values returned drought. Conversely, wet years were experienced in 1988–1990 and 2007–2010, with 1989 being the wettest year. The drought frequency was low (<19%) across all the timescales considered for both SPI and SPEI, with Mansour Eddahbi Dam and Assaka recording the highest frequencies for SPI-3 and SPEI-3, respectively.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3