Bioengineering Methods of Analysis and Medical Devices: A Current Trends and State of the Art

Author:

Cicciù MarcoORCID

Abstract

Implantology, prosthodontics, and orthodontics in all their variants, are medical and rehabilitative medical fields that have greatly benefited from bioengineering devices of investigation to improve the predictability of clinical rehabilitations. The finite element method involves the simulation of mechanical forces from an environment with infinite elements, to a simulation with finite elements. This editorial aims to point out all the progress made in the field of bioengineering and medicine. Instrumental investigations, such as finite element method (FEM), are an excellent tool that allows the evaluation of anatomical structures and any facilities for rehabilitation before moving on to experimentation on animals, so as to have mechanical characteristics and satisfactory load cycle testing. FEM analysis contributes substantially to the development of new technologies and new materials in the biomedical field. Thanks to the 3D technology and to the reconstructions of both the anatomical structures and eventually the alloplastic structures used in the rehabilitations it is possible to consider all the mechanical characteristics, so that they could be analyzed in detail and improved where necessary.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3