Abstract
The phase change heat transfer of nano-enhanced phase change materials (NePCMs) was addressed in a heatsink filled with copper metal foam fins. The NePCM was made of 1-Tetradecanol graphite nanoplatelets. The heatsink was an annulus contained where its outer surface was subject to a convective cooling of an external flow while its inner surface was exposed to a constant heat flux. The governing equations, including the momentum and heat transfer with phase change, were explained in a partial differential equation form and integrated using the finite element method. An artificial neural network was employed to map the relationship between the anisotropic angle and nanoparticles fractions with the melting volume fraction. The computational model data were used to successfully train the ANN. The trained ANN showed an R-value close to unity, indicating the high prediction accuracy of the neural network. Then, ANN was used to produce maps of melting fractions as a function of design parameters. The impact of the geometrical placement of metal foam fins and concentrations of the nanoparticles on the surface heat transfer was addressed. It was found that spreading the fins (large angles between the fins) could improve the cooling performance of the heatsink without increasing its weight. Moreover, the nanoparticles could reduce the thermal energy storage capacity of the heatsink since they do not contribute to heat transfer. In addition, since the nanoparticles generally increase the surface heat transfer, they could be beneficial only with 1.0% wt in the middle stages of the melting heat transfer.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献