Utilizing multilayer perceptron for machine learning diagnosis in phase change material‐based thermal management systems

Author:

Arif Abdul1,Reddy Vallapureddy Siva Nagi1,Srividya Kode2,Mallampalli Ujwal Teja3

Affiliation:

1. Aditya College of Engineering & Technology Surampalem Andhra Pradesh India

2. Prasad V Potluri Siddhartha Institute of Technology Kanuru Vijayawada India

3. Seshadri Rao Gudlavalleru Engineering College Gudlavalleru Andhra Pradesh India

Abstract

AbstractElectric vehicles encounter significant challenges in colder climates due to reduced battery efficiency at low temperatures and increased electricity demand for cabin heating, which impacts vehicle propulsion. This study aims to address these challenges by implementing a thermal management system utilizing Phase Change Materials (PCMs) and validating the performance of a Multilayer Perceptron (MLP) model in predicting PCMs behavior and battery temperature distributions. The study employs an MLP model trained with 160 samples of diverse heat inputs, including pulsating, constant, wiener, discharging, and random temperatures. The model uses these temperatures as inputs and liquid fractions as target values. Performance evaluation is conducted using the MATLAB platform and is benchmarked against existing approaches, such as Long Short‐term Memory (LSTM), spatiotemporal convolutional neural network (CNN), and pooled CNN‐LSTM. The MLP model's accuracy in predicting PCMs phase transitions is validated by comparing predicted liquid fractions with numerically obtained values. Additionally, this study forecasts temperature distributions within a standard battery pack under various discharge scenarios, considering the performance of commercial lithium‐ion batteries. The proposed MLP model demonstrates high efficacy, achieving a correlation of up to 0.999 and root mean squared error below 0.013 compared with numerical results.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3